
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 53:573–597
Published online 24 July 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1295

On stabilized finite element methods for the Stokes problem
in the small time step limit

Pavel B. Bochev1,∗,†, Max D. Gunzburger2,‡ and Richard B. Lehoucq1,�

1Computational Mathematics and Algorithms Department, Sandia National Laboratories, Mail Stop 1110,
Albuquerque, New Mexico 87185-1110, U.S.A.

2School of Computational Science, Florida State University, Tallahassee FL 32306-4120, U.S.A.

SUMMARY

Recent studies indicate that consistently stabilized methods for unsteady incompressible flows, obtained
by a method of lines approach may experience difficulty when the time step is small relative to the
spatial grid size. Using as a model problem the unsteady Stokes equations, we show that the semi-discrete
pressure operator associated with such methods is not uniformly coercive. We prove that for sufficiently
large (relative to the square of the spatial grid size) time steps, implicit time discretizations contribute
terms that stabilize this operator. However, we also prove that if the time step is sufficiently small,
then the fully discrete problem necessarily leads to unstable pressure approximations. The semi-discrete
pressure operator studied in the paper also arises in pressure-projection methods, thereby making our
results potentially useful in other settings. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stable and accurate mixed finite element methods for incompressible flows require pressure and
velocity approximations that satisfy the inf–sup (or LBB) compatibility condition [1, 2]. Among
other things, this condition prevents the use of standard, equal-order C0 elements defined with
respect to the same grid or low order pairs such as piecewise linear velocities and piecewise
constant pressures. Finite difference analogues of such pairs are collocated velocity–pressure and
nodal velocity-cell centred pressure schemes that are also unstable. Stabilized mixed methods
[3–11] circumvent the inf–sup condition and enable incompressible flow calculations using a
wider choice of velocity–pressure pairs. This offers advantages such as uniform data structures,
local conservation, and algebraic equations that are easier to solve by iterative methods. For this
reason, stabilized methods are in widespread use for the discretization of the steady-state and
time-dependent Navier–Stokes equations and related problems.

Stabilized methods for steady-state problems add terms that make the variational equation
coercive, or weakly coercive, for spaces that fail to satisfy the inf–sup condition; see References
[3, 12, 13] for general discussions. In this paper, we focus on consistently stabilized methods that
achieve stabilization by using residuals of the differential equations. When properly weighted,
these residuals provide the needed stabilization terms and at the same time vanish for the exact
solution so that the formal order of accuracy of the Galerkin method is preserved.

Stabilized methods for time-dependent problems are commonly defined by using a method of
lines approach whereby the spatial and temporal discretization steps are separated; see References
[14–17]. Stabilization terms are introduced in the semi-discrete (in space) equation by using
residuals of the time-dependent partial differential equation. In this approach, stabilization strategies
for unsteady problems are directly inherited from successful stabilization strategies used for steady-
state problems. The stabilized (in space) semi-discrete equation is then discretized in time by a
suitable time-stepping scheme. In particular, as far as stability is concerned, the time step of an
implicit time integrator method can be chosen large relative to the spatial grid size. However,
there are at least two settings in which the desired time step is much smaller than the spatial grid
size and for which the aforesaid methods do not perform as well as one would expect (relative to
their performance for larger time steps and for steady-state problems). First, in problems involving
chemical reactions, the size of the time step is often governed by the reaction rates. Thus, accuracy
considerations would suggest the use of a relatively large spatial grid size but a relatively smaller
time step is needed in order to account for the stiffness due to the reactions. Second, temporal and
spatial discretization algorithms of disparate orders of accuracy require that the errors due to the
two discretization steps be balanced by choosing correspondingly disparate time steps and spatial
grid sizes.

Complications in consistently stabilized methods arising from small time steps were reported
in References [18, 19]. The analysis found in Reference [19] established that spatial stabilization
in conjunction with finite differencing in time introduces destabilizing terms and that �t>�h2

(where � is a sufficiently large positive constant, �t denotes the times step and h some measure
of the spatial grid size) is a sufficient condition to avoid instabilities. Although the analysis in
Reference [19] remained inconclusive on the necessity of this condition, computational examples
in References [18, 19] strongly suggest that this is indeed the case.

We remark that although the use of relatively small time steps can result from the need to
accurately resolve transients due to fast reactions and/or strong advection, the small time step
problems encountered with stabilized methods for incompressible flows are not directly due to
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the appearance of reaction terms¶ or nonlinear terms in the differential equations. As a result, it
suffices to use as a model problem the unsteady Stokes equations.

Our paper demonstrates how the use of a time-dependent residual for the velocity–pressure
pair stabilization leads to a semi-discrete pressure operator that is unstable, or equivalently, is
not uniformly (with respect to h) coercive. This is a new result that explains why fully discrete
formulations experience problems in the �t → 0 limit. In contrast to the analyses of References
[18, 19] where the main focus was on the coercivity of the fully discrete stabilized variational
equation, here we start with the properties of the stabilized semi-discrete equation for the unsteady
Stokes flow. Then, we show that implicit discretization in time results in the pressure operator
acquiring additional terms that stabilize the fully discrete equations provided �t/�>� where � is
the stabilization parameter and �>0 is independent of h and �t . This necessary stability condition
implies that in the small time step limit � must scale as O(�t). On the other hand, to provide
velocity–pressure stabilization � must scale as O(h2). These are contradicting requirements that
cannot be satisfied unless �t and h are such that �t/h2>�. This is a significant improvement
over the result of Reference [19] because a lower bound on the ratio of temporal and spatial
discretization steps is necessary for stability, but can be otherwise chosen arbitrarily. The matrix
operator studied in this paper arises in other approaches such as exact or approximate pressure-
projection methods [25]. This makes our findings potentially useful to a wider range of methods
and discretization techniques for incompressible flows.

We have organized this paper as follows. A brief summary of notations ends this section.
In Section 2, we review stabilized mixed methods for the stationary Stokes problem. Section 3
extends these methods to the unsteady Stokes equations. Then, in Section 4, motivating compu-
tational examples illustrating small time-step pressure instabilities are provided. The main result
of this paper is found in Section 5 where we prove that the semi-discrete pressure operator is not
uniformly coercive. The fully discrete pressure-Poisson stabilized systems are defined and studied
in Section 6 where we show that the discretized in time pressure operator is conditionally stable
and derive a necessary stability condition in the form of a lower bound on the time step. Section
7 extends the main results in Sections 5 and 6 to two other stabilized formulations. In Section
8 we briefly comment on a connection with pressure-projection methods. Our conclusions are
summarized in Section 9.

1.1. Notations

We let Hk(�), ‖ · ‖k , | · |k and (·, ·)k denote the Sobolev space of all square integrable functions
with square integrable derivatives up to order k, and the standard Sobolev norm, seminorm and

¶Stabilized methods for scalar advection–diffusion–reaction and diffusion–reaction equations have been developed in
References [20–23]. In contrast to the stabilized methods considered in this paper, where the goal is to avoid the
inf–sup compatibility condition between the velocity and pressure approximations, such methods aim to stabilize
the weak Galerkin form associated with the singularly perturbed operator −ε��+��. Solutions of such equations
may have boundary layers where standard Galerkin methods will develop spurious oscillations. Recently, Harari [24]
used the reaction–diffusion model to explain some pathologies arising in the numerical solution of the heat equation
by an implicit time integration. He pointed out that for sufficiently small time steps and implicit discretization in
time, the fully discrete heat equation is similar to a finite element approximation of a singularly perturbed elliptic
problem. Accordingly, stabilized methods designed for reaction–diffusion problems can be applied to stabilize the
fully discrete heat equation at the small time step limit. In contrast, in this paper we consider a pathology that
is caused by the velocity–pressure stabilization itself and that cannot be remedied unless the time step is large
enough, because the associated semi-discrete equation is not well-posed.
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inner product, respectively. The domain � denotes a simply connected bounded region in Rd ,
d = 2, 3, with a sufficiently smooth boundary �. The space L2(�) denotes H0(�) and so we
drop the zero from the inner product designation. As usual, H1

0 (�) = {v ∈ H1(�) | v = 0 on �}
and L2

0(�) = {q ∈ L2(�) | ∫� q d�= 0}. Spaces of vector-valued functions are denoted by bold-
face notation so that H1(�) is the space of vector-valued functions whose components belong to
H1(�). Matrices and vectors are denoted by upper-case letters such as A and A, respectively. The
time interval of interest is designated as (0, T ) with T>0. In this paper, we consider continuous
piecewise polynomial finite element spaces defined with respect to a regular [26] partition Th of
the domain � into finite elements K. For example, K can be a hexahedron or tetrahedron in three
dimensions or a triangle or quadrilateral in two dimensions.

2. STABILIZED MIXED GALERKIN METHODS FOR THE STEADY-STATE
STOKES EQUATIONS

In the method of lines approach for unsteady problems, a spatial discretization is followed by
a finite difference approximation in time. In this paper, we focus on finite element methods for
which the spatial discretization is obtained by extending a class of consistently stabilized mixed
methods for the steady-state Stokes problem

−�u + ∇ p = f in �

∇ · u= 0 in �

u= 0 on �

(1)

to the time-dependent equations. This section provides a concise summary of the relevant stabilized
methods for (1).

LetVh ⊂ H1
0(�) andPh ⊂ L2

0(�) denote a conforming velocity–pressure finite element pair for
(1). An (unstabilized) mixed finite element method [2] for (1) is given by: seek (uh, ph) ∈ Vh×Ph
such that

G({uh, ph}, {vh, qh}) = (f, vh) for all (vh, qh) ∈ Vh × Ph (2)

where

G({uh, ph}, {vh, qh}) = (∇uh, ∇vh) − (ph, ∇ · vh) − (qh, ∇ · uh) (3)

is the mixed Galerkin variational form. Let {nhi }Ki=1 and {�hi }Mi=1 denote bases for Vh and Ph ,
respectively, so that

uh(x) =
K∑
j=1

Ujn
h
j (x) and ph(x)=

M∑
j=1

Pj�
h
j (x) (4)

Then, the weak variational equation (2) is equivalent to the matrix problem(
A BT

B 0

)(
U

P

)
=
(
F

0

)
(5)
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where the j th components of U and P are Uj and Pj , respectively. The matrices A ∈RK×K and
B ∈RM×K are defined in the usual manner from the terms in the Galerkin mixed form (3) and
represent the stiffness and divergence matrices. Their entries in the i th row and j th column are
given by

Ai j = (∇nhi ,∇nhj ) and Bi j = − (�hi , ∇ · nhj ) (6)

respectively. In a similar fashion, F is defined from the source term f in (2), i.e. Fi = (f, nhi ).
The second equation of (5) implies that the velocity is discretely divergence free (or discretely

solenoidal) which, in the context of finite element methods, simply means that

(qh,∇ · uh) = 0 for all qh ∈Ph

The variational equation (2), or equivalently, the linear system (5) are stable if and only if the
finite element pair (Vh,Ph) satisfies the inf–sup condition [1, 2, 27]

inf
qh∈Ph ,qh �=0

sup
vh∈Vh ,vh �= 0

(qh, ∇ · vh)
‖vh‖1‖qh‖0 = �h��min

h >0 (7)

where �min
h is independent of the grid size h. This is equivalent to the condition that the matrix B

is uniformly, with respect to h → 0, of full row rank; see References [3, 28–30].
Many popular and/or simple choices for (Vh,Ph) fail to satisfy the inf–sup condition (7). Such

is the case if the velocity–pressure pair consists of equal-order, C0 elements defined with respect
to the same partition Th of � into finite elements and also if (Vh,Ph) is the piecewise linear
(or bilinear)-piecewise constant pair; see References [1, 2] for details. The primary motivation for
the use of stabilized methods is to allow for a stable and accurate approximation of (1) by such
pairs. In doing so, the class of admissible pairs for incompressible flow calculations is extended to
finite element spaces that offer additional computational advantages such as uniform data structures
or local mass conservation.

In this paper we consider only consistently stabilized methods for (1); these are formulations
that are exactly satisfied by the solutions of the Stokes problem (1). They are also the ones that
are in most common use because they retain the formal approximation order of (2). Consistently
stabilized methods have the following general form: seek (uh, ph) ∈ Vh × Ph such that

G({uh, ph}, {vh, qh}) + 〈Rm(uh, ph),Wm(vh, qh)〉m

+ 〈Rc(uh, ph),Wc(vh, qh)〉c = (f, vh) (8)

for all (vh, qh) ∈ Vh × Ph , where

Rm(uh, ph)|K =−�uh + ∇ ph − f and Rc(uh, ph)|K =∇ · uh
are element residuals of the Stokes equations (1), Wm(vh, qh) and Wc(vh, qh) are weighting func-
tions, and 〈·, ·〉m and 〈·, ·〉c are discrete inner products. To avoid technical complications that are
irrelevant to our study, in what follows we restrict attention to equal order C0 velocity–pressure
pairs. A common choice for such pairs is to set

Wc(vh, qh) = 0, Wm(vh, qh) = − ��vh − ∇qh and 〈uh, vh〉m = ∑
K∈Th

�K(uh, vh)K
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where � can take on the values ±1 or 0 and �K are positive, real stabilization parameters. Noting
that 〈·, ·〉m is a ‘broken’ L2 inner product (broken into a sum of inner products over the individual
elements), the weak equation (8) takes the form: seek (uh, ph) ∈ Vh × Ph such that

G({uh, ph}, {vh, qh}) − ∑
K∈Th

�K(−�uh + ∇ ph − f, −��vh + ∇qh)K = (f, vh) (9)

for all (vh, qh) ∈ Vh × Ph . For � = 1, 0, −1, the method (9) is, respectively, known as the
Galerkin-least-squares [10], the pressure-Poisson stabilized Galerkin [11], and the Douglas–Wang
[7] method; see Reference [3] for a review. A standard choice of stabilization parameters is

�K = �h2K (10)

where hK is a measure of the element size and �>0 is a real parameter that is independent of hK
but whose values may be restricted in order to guarantee the stability of the discrete problem (9);
see References [3, 8]. We refer to (10) as the spatial �; see References [31, 32].

3. STABILIZED SEMI-DISCRETE FORMULATIONS OF THE UNSTEADY
STOKES EQUATIONS

The time-dependent Stokes equations are given by

�u
�t

− �u + ∇ p = f in � × (0, T )

∇ · u= 0 in � × (0, T )

u= 0 on � × (0, T )

u|t=0 = u0 in �

(11)

with velocity u(x, t) and pressure p(x, t), where f(x, t) and u0(x) are given functions.
In a method of lines approach, to obtain the semi-discrete formulation of (11) we express the

approximate solution as

uh(x, t) =
K∑
j=1

Uj (t)n
h
j (x) and ph(x, t) =

M∑
j=1

Pj (t)�
h
j (x) (12)

where, as before, {nhi }Ki=1 and {�hi }Mi=1 span a conforming velocity–pressure pair Vh ⊂ H1
0(�) and

Ph ⊂ L2
0(�), respectively. The main difference between (4) and (12) is that now the coefficients

of the finite element approximations are time-dependent. An (unstabilized) mixed finite element
semi-discretization of (11) is defined as follows: seek uh(·, t) ∈ Vh and ph(·, t) ∈Ph such that

(u̇h(·, t), vh) + G({uh(·, t), ph(·, t)}, {vh, qh}) = (f(·, t), vh) (13)

(uh(·, 0), vh) = (u0, vh) (14)
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for all (vh, qh) ∈ Vh × Ph and t ∈ (0, T ). The semi-discrete equation (13) is equivalent to the
differential-algebraic equation (DAE)(

M U̇

0

)
+
(

A BT

B 0

)(
U

P

)
=
(
F

0

)
(15)

and the initial condition (14) is equivalent to the linear algebraic system

MU (0)=U0 (16)

In (15) and (16), U (t) ={U1(t), . . . ,UK (t)} and P(t) = {P1(t), . . . , PM (t)} are the vectors of
unknown coefficients corresponding to uh(x, t) and ph(x, t), respectively. The matrix M ∈ RK×K

is defined in the usual manner from the first term in (13) and represents the consistent mass matrix
having the entry in the i th row and j th column given by

Mi j = (nhi , n
h
j ) (17)

Similarly, the vectors F(t) and U0 are defined from the source term f and the initial data u0,
respectively, i.e. Fi = (f, nhi ) and (U0)i = (u0, nhi ).

If (Vh,Ph) satisfies (7), then (13) and (14) or, equivalently, the DAE (15) and (16), is a
spatially stable problem for any time t>0. On the other hand, if (Vh,Ph) does not satisfy (7),
which is the case when one uses equal-order, C0 elements defined on the same grid, then the
mixed Galerkin form G(·, ·) in (13) is unstable and this equation will not, in general, produce
accurate approximations at any time t>0. To enable the use of unstable velocity–pressure pairs in
the spatial discretization of (11), the mixed Galerkin form G(·, ·) must be properly stabilized.

Our study focuses on formulations that extend the consistently stabilized family of methods (9)
to the time-dependent Stokes equations. We will refer to such algorithms as spatially stabilized
methods. A simple and obvious way to stabilize the semi-discrete equation (13) is to add the same
terms as in (9). However, if u is an unsteady solution of (13) and (14), then −�u+∇ p−f= −u̇ �= 0
and so the modified semi-discrete equation will no longer be consistent. To fulfill the consistency
requirement, stabilization terms can be introduced by using the full time-dependent residual:

− ∑
K∈Th

�K (u̇h(·, t) − �uh(·, t) + ∇ ph(·, t) − f(·, t),−��vh + ∇qh)K

This results in the following modified semi-discrete equation: seek uh(·, t) ∈ Vh and ph(·, t) ∈Ph
such that (14) and

(u̇h(·, t), vh) + G({uh(·, t), ph(·, t)}, {vh, qh}) − (f(·, t), vh)

− ∑
K∈Th

�K(u̇h(·, t) − �uh(·, t) + ∇ ph(·, t) − f(·, t),−��vh + ∇qh)K = 0 (18)

hold for all (vh, qh) ∈ Vh × Ph and t ∈ (0, T ). An alternative definition of � for time dependent
problems and uniform grids is given by [31, 32]

� =
((

2

�t

)2

+ 1

(�h2)2

)−1/2

(19)

To distinguish this definition from (10) we refer to (19) as the transient �.
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The modified problem (18) is consistent in the sense that any sufficiently smooth solution
(u(x, t), p(x, t)) of (11) satisfies (18). The consistency requirement is fulfilled by the inclusion of
the weighted time derivative term

− ∑
K∈Th

�K(u̇h, −��vh + ∇qh)K (20)

in (18). Our main concern, however, lies with the well-posedness of this equation. While

− ∑
K∈Th

�K(−�uh + ∇ ph − f, −��vh + ∇qh)K (21)

contributes the same terms that were sufficient to stabilize the steady mixed Galerkin equation (2),
it is not clear whether or not the combination of (20) and (21) makes the modified semi-discrete
equation (18) uniformly stable with respect to h.

Our studies in References [18, 19] suggest that (18) may not be well-behaved. We found that
the fully discrete equations become unstable when the time step �t is sufficiently small compared
to the mesh size h. However, analyses based on the fully discrete problem only allowed us to show
that �t>�h2, where � is sufficiently large, is a sufficient stability condition. In this paper, we take
a different approach and base our analysis on the semi-discrete problem. We are motivated by
the fact that in the limit �t → 0, a fully discrete formulation approaches (18). Therefore, stability
problems observed through the fully discrete equations at the small time step limit may in fact be
due to the inherent instability of (18) itself.

4. MOTIVATING COMPUTATIONAL EXPERIMENTS

We now provide a sample of the experiments that motivated us to consider the behaviour of
stabilized finite element methods for the unsteady Stokes equations in the small time step limit.
We plot the pressure field obtained after a single step of the backward-Euler method applied to (18)
with �= 0 and � defined by (10), i.e. we consider an extension of the pressure-Poisson stabilization
to the time-dependent setting using the spatial �. The initial data u0 and source term f are generated
by the time independent exact solution

u= curl	 and p= sin(x) cos(y) + (cos(1) − 1) sin(1) (22)

where 	(x, y)= x2(1 − x)2 sin2(
y). This choice of u ensures that (1) u is solenoidal and that
(2) u satisfies the homogeneous boundary condition in (1). The right-hand side of the momentum
equation corresponding to (22) is given by

f=
⎛⎝2
(−1 + 6x + 2(
2 − 3)x2 − 4
2x3 + 2
2x4) sin(2
y) + cos(x) cos(y)

4
2x(1 − 3x + 2x2) cos(2
y) − 12(1 − 2x) sin2(
y) − sin(x) sin(y)

⎞⎠
The hydrostatic pressure mode is eliminated by fixing the pressure value at a single grid node. We
note that this reduces convergence by a logarithmic factor in two dimensions and by one order
in three dimensions [33]. However, the goal of our study is the small time step behaviour rather
than spatial convergence and so this simple method is acceptable. If (uh, ph) is a solution of the
steady-state stabilized Stokes problem (9) with � = 0, then (uh, ph) is also a solution of the fully
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Figure 1. Approximate pressure in the �t → 0 limit for the Taylor–Hood element pair and n = 3, 4, 5, 6.
The tick marks denote node numbers in x (horizontal axis) and y (vertical axis) directions.

discrete problem obtained from (18) (with the same value of �). Therefore, if u0h is computed by
(16), after one time step, the unsteady approximation (u1h, p

1
h) should be an O(�t) perturbation

of the steady-state solution (uh, ph). Thus, for small �t , these two solutions are indistinguishable,
that is, (u1h, p

1
h) should be unchanged as we reduce the time step.

In the experiments,� is the unit square,Th is a uniform triangulation consisting of 200 triangles,
and the time steps are (�t)n = 10−n for n = 3, 4, 5, 6. For this mesh, h = 0.1 and h2 = 0.01 so that
(�t)k<h2. On two occasions, we also use the time step (�t)1 = 10−1 that is larger than h2. To
provide a reference solution, we solve (13) using the stable Taylor–Hood element pair, the same
spatial grid, the same time integration method, and the same time steps. Figure 1 shows that ph is
an accurate approximation of the exact pressure that does not change as the time step is reduced
from (�t)3 to (�t)6. We conclude that the Taylor–Hood pair remains stable when �t<h2.

On uniform grids we can use the same value of �K on all elements. As a result, for the
stabilized method, we only need to select the parameter � in (10). In Reference [3], the value
� = 0.05 was found to be optimal in numerical convergence studies on uniform grids. We use this
value to compute the stabilized solution for the four time steps and equal order P1–P1, P2–P2, and
P3–P3 velocity–pressure pairs. The top row in Figure 2 shows the approximate pressure ph for
P1–P1 elements after one time step. As the time step decreases from (�t)3 to (�t)6, ph appears to
converge to a state that is not an accurate approximation of the true solution (22). We recall that for
linear elements, the term −�uh in (18) vanishes and the stabilizing contribution of the spatial term
(21) defaults to

∑
K �K(∇ ph,∇qh)K. This gives an inconsistently stabilized method similar to

the one described in Reference [34], and so some loss of accuracy is to be expected. Specifically,
the Neumann condition on the pressure is induced by the term

∑
K �K(−�uh, ∇qh)K. For linear

elements this term vanishes and so the pressure is subjected to an incorrect homogeneous Neumann
condition.

The middle row in Figure 2 shows ph for P2–P2 elements. One step of the backward-Euler
method with (�t)3 leaves ph essentially unchanged. However, as the time step decreases, the
pressure approximations begin to deviate from the exact solution, with the deviation being strongest
for the smallest time step. We note that this happens in a fairly smooth manner.

For the P3–P3 pair, the pressure behaviour is markedly different. The bottom row in Figure 2
shows no substantial variations in ph for (�t)3 and (�t)4. However, reducing the time step to
(�t)5 leads to an abrupt change in ph and the onset of spurious oscillations. A further reduction of
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Figure 2. Pressure approximations in the �t → 0 limit; P1–P1, P2–P2, and P3–P3
stabilized methods with �= 0.05 and n = 3, 4, 5, 6. The tick marks denote node numbers

in x (horizontal axis) and y (vertical axis) directions.

the time step to (�t)6 strengthens the oscillations and they assume a characteristic node-to-node
pattern.

The sensitivity of the stabilized method with the P3–P3 element, compared to the relatively
smooth transitions with the P1–P1 and P2–P2 pairs, calls for a further investigation. We first
consider the behaviour of the method as � changes. In Reference [3], it was established numerically
that for � = 0 method (8) remains stable for values of � up to 100. For our study, we use the values
� = 5, 0.5, 0.05, and 0.005 and then compute the finite element solution using the time steps (�t)1
and (�t)6. The first of these time steps satisfies �t>h2 and the top row in Figure 3 shows that in
this case the only adverse effect from varying � is the occurrence of small layers when � = 5. The
condition �t>h2 does not hold for (�t)6. In this case, every change in � causes an abrupt change
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Figure 3. Pressure approximation: stabilized method with P3–P3 elements and �= 5.0,
0.5, 0.05, and 0.005. Top row: �t = (�t)1; bottom row: �t = (�t)6. The tick marks

denote node numbers in x (horizontal axis) and y (vertical axis) directions.

in ph . Note that the most oscillatory solutions occur for � = 0.05 (the optimal value) and � = 0.5,
while � = 5, which was the worst value for (�t)1, yields an oscillation free (but completely wrong)
pressure approximation.

We conclude the computational experiments by examining the effects of the quadrature rule
on the P3–P3 pair. We take � = 5 and compute the approximate solution using (�t)1 and (�t)6.
From the top row in Figure 4, we see that changing from a 7 point to a 13 point quadrature rule
has no effect whatsoever for the larger time step. For (�t)6, we see that exactly the opposite is
true. Using the less accurate 7 point rule leads to a perceptible change in ph . While for both cases
the approximate solutions are completely spurious, they look reasonably ‘good’ in the eyeball
norm so that without knowledge of the exact solution, they could be easily mistaken for valid
approximations. Repeating the same experiments with the P1–P1 and P2–P2 pairs shows less
sensitivity with respect to the choice of � and quadrature rule.

The following conclusions can be drawn from the computational experiments. For all three finite
element spaces, the pressure approximations obtained using the stabilized method begin to deviate
from the exact solution as the time step becomes smaller than h2. Increasing the polynomial order
makes the method more sensitive to changes in parameters and the pressure deviations become
more pronounced. In contrast, the Taylor–Hood element pair remains remarkably stable in the
�t → 0 limit. In the next section we show that the key to understanding this behaviour is the
semi-discrete equation (18).
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Figure 4. Pressure approximation: stabilized method with P3–P3 elements, �= 5, and different quadrature
rule choices. Top row: (�t)1; bottom row: (�t)6.

5. ANALYSIS OF THE SEMI-DISCRETE PRESSURE OPERATOR

We examine the semi-discrete pressure operator for the case of �= 0 in (18). This choice corre-
sponds to the pressure-Poisson stabilized method, eliminates several unimportant terms, helps to
avoid tedious calculations, and allows us to compare theory against the numerical data presented
in Section 4. The cases � = 1 and −1 will be considered briefly in Section 7.

We rewrite (18) in matrix form as

(
M U̇

B̃ U̇

)
+
(

A BT

−B − S̃ K̃

)(
U

P

)
=
(
F

G̃

)
(23)

The second row in (23) is scaled by −1 to put the pressure equation in a canonical form that is
shared with pressure-projection methods. The matrices A, B, and M were defined in (6) and (17)
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and the matrices

B̃i j = ∑
K∈Th

�K(nhj , ∇�hi )K, K̃i j = ∑
K∈Th

�K(∇�hj , ∇�hi )K, S̃i j = ∑
K∈Th

�K(�nhj , ∇�hi )K

arise from the stabilizing term (21) and the consistency term (20). In addition, we have the stabilized
source term

G̃i = ∑
K∈Th

�K(f, ∇�hi )K

Note that without stabilization, �K = 0 for all K, all (̃·) terms in (23) vanish, and the stabilized
problem reduces to the mixed Galerkin semi-discrete equation (15). We remark that (15) is unstable
for all equal order pairs considered in the experiments.

After U̇ is eliminated from (23), we obtain the semi-discrete pressure equation

(K̃ − B̃M−1BT)P = G̃ − B̃M−1F + (B + S̃ + B̃M−1A)U (24)

To analyse (24) we assume that Th is a regular triangulation. In this case �K can be chosen to
have the same value � on all elements K. This allows to simplify some ‘broken’ inner product
terms of the type

∑
K∈Th

�K(·, ·)K to the standard L2 inner product �(·, ·). Note that in this case

B̃ = �B, K̃ = �K, S̃ = �S, and G̃ = �G, where B is the matrix defined in (6),

Ki j = (∇�hj ,∇�hi ), Si j = ∑
K∈Th

(�nhj , ∇�hi )K and Gi = (f,∇�hi ) (25)

With these assumptions the semi-discrete pressure equation (24) simplifies to

(K − BM−1BT)P =G − BM−1F +
(
1

�
B + S + BM−1A

)
U (26)

The matrix acting on the pressure can be viewed as a difference of two scaled discrete Laplacian
operators. The same matrix difference arises in pressure-projection methods but there it acts to
relax the continuity equation and provides additional stability that allows the use of equal-order
interpolation [25]. The following theorem gives information about the eigenvalues of this matrix.
In the theorem, ‖Q‖2K = QTKQ.

Theorem 1
Let B, M, and K be defined as in (6), (17), and (25), respectively. Then,

QT(K − BM−1BT)Q�(1 − �2min)‖Q‖2K ∀Q ∈ (Ker(BT))⊥ (27)

and

QT(K − BM−1BT)Q�(1 − �2max)‖Q‖2K ∀Q ∈ RM (28)

where �2min �= 0 and �2max are the smallest nonvanishing and the largest eigenvalues of the generalized
eigenvalue problem

BM−1BTQ = KQ�2 (29)

Moreover,

0<�2min��2max�1 (30)
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Note that there exist vectors Qmin ∈ RM and Qmax ∈ RM such that (27) and (28), respectively, hold
with equality.

Proof
From (29), we have that

QT(K − BM−1BT)Q = (1 − �2)QTKQ = (1 − �2)‖Q‖2K (31)

A result in Reference [25, p. 22] proves that the matrix K − BM−1BT is positive semi-definite
and hence (31) implies that �2�1 for all eigenvalues �2 satisfying (29). This establishes the upper
bound in (30). Furthermore, for any positive eigenvalue �2, we have that 0<�2min��2��2max�1 so
that 0�1−�2max�1−�2�1−�2min<1 and thus (27) and (28) follow from (31). Note that in (27) we
restrict Q to belong to (Ker(BT))⊥ because Q ∈ Ker(BT) are eigenvectors of (28) corresponding
to the zero eigenvalue �2 = 0.

Now, if we choose Qmax ∈ RM to be the generalized eigenvector satisfying BM−1BTQmax =
KQmax�2max, then one easily sees that (28) holds with equality. Similarly, choosing Qmin ∈ RM

such that BM−1BTQmin = KQmin�2min leads to (27) holding with equality. �

This theorem refines the result proved in Reference [25]. As mentioned in our proof, the paper
[25] established that K−BM−1BT is symmetric, positive semi-definite but did not provide bounds
for the eigenvalues.

We will be interested in obtaining some information about �2min and especially about �2max. To
this end, we begin by noting that if �2 �= 0 and Q ∈ (Ker(BT))⊥ are a generalized eigenpair for the
problem (29), then there exists a V ∈ (Ker(B))⊥ such that �>0, Q, and V satisfy the generalized
singular-value problem

BTQ = MV� and BV = KQ� (32)

Indeed, if �2 �= 0 and Q ∈ (Ker(BT))⊥ satisfy (29), then setting �V = M−1BTQ results in (32) and
we are free to choose �>0. Moreover, using (32), we have that (BV )TK−1(BV ) = (�KQ)TK−1

(�KQ)= �2QTKQ �= 0 so that BV �= 0 and we can choose V ∈ (Ker(B))⊥. See Reference [35]
for more information on the existence of singular values and vectors and Reference [36, pp. 75–77]
for a discussion of a similar singular-value problem arising from the inf–sup condition.

The minimum and maximum singular values of (32) may be characterized in terms of generalized
Rayleigh quotients by the expressions

�min ≡ min
Q∈(Ker(BT))⊥

max
V∈(Ker(B))⊥

QTBV

‖V ‖M‖Q‖K
= min

Q∈(Ker(BT))⊥
max
V∈RN

QTBV

‖V ‖M‖Q‖K
(33)

and

�max ≡ max
Q∈(Ker(BT))⊥

max
V∈(Ker(B))⊥

QTBV

‖V ‖M‖Q‖K
= max

Q∈RM
max
V∈RN

QTBV

‖V ‖M‖Q‖K
(34)

where ‖V ‖2M = V TMV . In order to estimate the singular values we recast generalized Rayleigh
quotients in (33) and (34) in terms of finite element functions. If vh ∈ Vh and qh ∈Ph are the
finite element functions for which V and Q are the corresponding vector of coefficients, then,
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using the definitions of M, B, and K, one can show that (33) and (34) are, respectively, equiva-
lent to

�min = inf
qh∈(Nh)⊥,qh �= 0

sup
vh∈Vh ,vh �= 0

(∇qh, vh)
|qh |1‖vh‖0 (35)

and

�max = sup
qh∈Ph ,qh �= 0

sup
vh∈Vh ,vh �= 0

(∇qh, vh)
|qh |1‖vh‖0 (36)

where

Nh ={qh ∈ Ph | (∇qh, vh) = 0 ∀ vh ∈ Vh}
i.e. Nh is the null space of the discrete gradient operator.

A few comments are now in order. The finite element expression (35) for the smallest singular
value �min resembles the inf–sup condition (7), but with ‘reversed’ norms applied to the velocity
and pressure. In Reference [13, p. 273] this condition is referred to as the alternative inf–sup
condition. The reversal of norms follows from the singular value decomposition (32) that was
designed to provide bounds for the eigenvalues of K − BM−1BT. Note also that if (Nh)⊥ =RM ,
i.e. if the null space of the discrete gradient operator is trivial, then we have that B is of full row
rank and (27) holds for all Q ∈ RM . Further discussion of the eigenvalue problem (29), relevant
to the design of preconditioners for incompressible flows, can be found in Reference [13, p. 348].
Among other things, this discussion highlights some complications arising in the analysis of (29)
in the case of natural outflow boundary conditions. However, these complications apply primarily
to establishing the alternative inf–sup condition from (35).

We are, however, more interested in the lower bound (28) so that (36) is more relevant. From
(28), we see that the stability of the semi-discrete pressure operator K − BM−1BT depends upon
an upper bound for the largest singular value �max instead of a lower bound for the smallest
singular value �min; the latter is what one looks for when studying inf–sup conditions (again, see
References [13, 36] for a discussion relevant to the inf–sup condition). Therefore, an immediate
question raised by Theorem 1 is whether or not there exists a �̂max<1 such that �max � �̂max
uniformly in h>0? Our next result demonstrates that the answer to this question is negative.

Theorem 2
Let the hypothesis of Theorem 1 hold. If h denotes a characteristic mesh size, then

1 − �h + O(h2)��max�1 with ��0 (37)

where �max is defined in (34).

Proof
The upper bound in (37) was proved in Theorem 1. For the lower bound, instead of giving a proof
for general grids, we choose a setting that will allow us to compute explicitly the value of � in
(37). In doing so, we avoid tedious technical details and provide the reader with information about
how the coercivity bound in (28) changes with the polynomial degree.

Let �=[0, 1]2 and � be its boundary. Consider partitions of � consisting of n2 square elements.
The side of each element has length h = n−1. The value of � will be calculated for equal-order
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bilinear, biquadratic, and bicubic finite element spaces. These spaces, denoted by Q1–Q1, Q2–Q2,
and Q3–Q3, have 4, 9 and, 16 nodes per element, respectively. The standard nodal (Lagrangian)
basis on Qk is denoted by {�i }Li = 1. Therefore, if N (�) is the set of all grid nodes xi , then
�i (x j ) = �i j . The sets of all boundary nodes and all interior nodes are denoted by N (�) and N (�),
respectively; �̆ denotes the union of all interior elements, i.e. of those elements with vertices
belonging to N (�); �� is the complement of �̆.

The function

q̃h = x −
∫

�
x d�

belongs to all C0(�) piecewise polynomial spaces on a uniform square mesh and ∇q̃h = (1, 0)T.
Define the velocity field ṽh by

ṽh =
(

�h

0

)
, where �h(xi ) =

{
1 if xi ∈ N (�)

0 if xi ∈ N (�)
(38)

The function �h equals one on �̆ and transitions to 0 over �� so that ṽh = 0 on ��. We compute
the fraction in (36) for the pair (q̃h, ṽh). The number of elements in �� is 4(n−1) and the area of
any element equals n−2 = h2 so that the area of �̆ is A(�̆) = (1− 4(n − 1)/n2) = (1− 4h + 4h2).
Therefore,

(∇q̃h, ṽh) =
∫

�̆
1 d� +

∫
��

�h d�= A(�̆) +
∫

��

�h d�= (1 − 4h + 4h2) +
∫

��

�h d�

‖̃v‖20 =
∫

�̆
1 d� +

∫
��

�2
h d�= A(�̆) +

∫
��

�2
h d�= (1 − 4h + 4h2) +

∫
��

�2
h d�

and

|̃qh |21 =‖∇q̃h‖20 =
∫

�
1 d�= A(�) = 1

The integrals of �h and �2
h over �� are easy to compute on the uniform mesh; Table I shows their

values for the Q1–Q1, Q2–Q2, and Q3–Q3 element pairs. The values of (∇q̃h, ṽh) and ‖̃vh‖20 are
also given in Table I. The last row of that table provides asymptotic estimates for ‖̃vh‖0.

Using the values in Table I, we determine that

(∇q̃h, ṽh)
|̃qh |1‖̃vh‖0 = 1 − 2h + h2

1 − 4
3h + O(h2)

= 1 − 2

3
h + O(h2) ≈ 1 − 0.66667h

for the Q1–Q1 element pair,

(∇q̃h, ṽh)
|̃qh |1‖̃vh‖0 = 1 − 2

3h + 1
9h

2

1 − 2
5h + O(h2)

= 1 − 4

15
h + O(h2) ≈ 1 − 0.26667h
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Table I. Integrals of �h and �2
h , (∇q̃h, ṽh), ‖̃vh‖20, and asymptotic estimates for ‖̃vh‖0

for uniform Q1–Q1, Q2–Q2, and Q3–Q3 element pairs.

Q1–Q1 Q2–Q2 Q3–Q3∫
��

�h d� 2h − 3h2 10
3 h − 35

9 h2 7
2h − 63

16h
2∫

��
�2
h d�

4
3h − 20

9 h2 16
5 h − 96

5 h2 347
105h − 171071

44100 h2

(∇q̃h, ṽh) 1 − 2h + h2 1 − 2
3h + 1

9h
2 1 − 1

2h + 1
16h

2

‖̃vh‖20 1 − 8
3h + 16

9 h2 1 − 4
5h + 4

25h
2 1 − 73

105h + 5329
44100h

2

‖̃vh‖0 ≈ 1 − 4
3h + O(h2) 1 − 2

5h + O(h2) 1 − 73
210h + O(h2)

for the Q2–Q2 element pair, and

(∇q̃h, ṽh)
|̃qh |1‖̃vh‖0 = 1 − 1

2h + 1
16h

2

1 − 73
210h + O(h2)

= 1 − 16

105
h + O(h2) ≈ 1 − 0.15238h

for the Q3–Q3 element pair. With the obvious relation

�max = sup
qh∈Ph ,qh �= 0

sup
vh∈Vh , vh �= 0

(∇qh, vh)
|qh |1‖vh‖0� (∇q̃h, ṽh)

|̃qh |1‖̃vh‖0
we obtain the lower bound in (37) with

�=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3 for the Q1–Q1 element pair

4
15 for the Q2–Q2 element pair

16
105 for the Q3–Q3 element pair

(39)

�

The following result is an immediate consequence of Theorems 1 and 2.

Corollary 3
Let the hypothesis of Theorem 1 hold. Then, there exists a Qmax ∈ RM such that

QT
max(K − BM−1BT)Qmax�(2�h + O(h2))‖Qmax‖2K (40)

where �>0 is given in (39).

Proof
From Theorem 1, there exists a Qmax ∈ RM such that

QT
max(K − BM−1BT)Qmax = (1 − �2max)‖Qmax‖2K

From (37), we have that

1 − �2max�2�h + O(h2)

Combining these two results yields (40). �
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Corollary 3 shows that for sufficiently fine uniform square grids

QT
max(K − BM−1BT)Qmax�‖Qmax‖2K

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
3h + O(h2) for the Q1–Q1 element pair

8
15h + O(h2) for the Q2–Q2 element pair

32
105h + O(h2) for the Q3–Q3 element pair

so that K − BM−1BT is not uniformly invertible. Seemingly, raising the polynomial degree by
one roughly halves the constant �. Thus, for higher-order element pairs, the pressure operator
K − BM−1BT will become computationally unstable for coarser grids. This finding is confirmed
by our experiments. From the experiments we also see that the spurious modes of the semi-
discrete pressure operator lack an obvious pattern that makes their potential identification and
elimination extremely difficult. Specifically, these unstable modes are not necessarily associated
with a node-to-node checkerboard like oscillation even on a uniform grid.

6. THE STABILIZING ROLE OF TIME DISCRETIZATION

The results of Section 5 show that the semi-discrete pressure operator K − BM−1BT obtained
with � = 0 is unstable. In this section, we show that the backward-Euler implicit time discretization
contributes stabilizing terms that can render the fully discrete pressure operator stable. However,
this stabilization is conditional and requires a sufficiently large time step. If the time step is too
small, the stabilization provided by the implicit time discretization is not sufficient to overcome the
instability of the semi-discrete operator. Our analysis applies to other implicit time discretization
methods, e.g. the generalized trapezoidal rule, because they contribute similar stabilization terms
to the fully discrete pressure operator; see Reference [18].

Assuming the simplifications introduced in Section 5, the application of the backward-Euler
rule to (23) results in the fully discrete formulation(

M + �tA �tBT

(� − �t)B − ��tS ��tK

)⎛⎝Uk+1

Pk+1

⎞⎠ =
(

M 0

�B 0

)(
Uk

Pk

)
+ �t

⎛⎝ Fk+1

�Gk+1

⎞⎠ (41)

where the superscripts k + 1 and k refer to values at time steps tk+1 and tk , respectively. A simple
but tedious calculation [18] shows that

Uk+1 = (M + �tA)−1[M − BT(K + NBT)−1(NM + B)]Uk

+�t(M + �tA)−1[Fk+1 − BT(K + NBT)−1(NFk+1 + Gk+1)] (42)

for the velocity and

Pk+1 = (K + NBT)−1
[
1

�t
(NM + B)Uk + NFk+1 + Gk+1

]
(43)

for the pressure, where

N =
(

�t

�
B − B + �tS

)
(M + �tA)−1
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The symmetric, positive definite matrices M and A are invertible for any standard choice of finite
element approximating spaces for the velocity. As a result, the matrix M+�tA is likewise invertible.
Therefore, the well posedness of solutions (42) and (43) is dependent upon the invertibility of
the fully discrete pressure operator K + NBT. The following theorem shows that this operator
is conditionally stable. We first remark, however, that although the term 1/�t(NM + B) on the
right-hand side of (43) may appear to be a potential source of instability, in fact, that term is
benign.

Theorem 4
The fully discrete pressure operator K + NBT satisfies

QT(K + NBT)Q = QT
(

K +
(

�t

�
− 1

)
(BM−1BT + O(�t))

)
Q + O(�t) (44)

and, for any �>0,

QT(K + NBT)Q�1

2
min{1, �}‖Q‖2K if

�t

�
�� (45)

Proof
Substituting for N, the fully discrete pressure operator takes the form

K + NBT =
(

K +
(

�t

�
− 1

)
B(M + �tA)−1BT

)
+ �tS(M + �tA)−1BT (46)

The term S(M + �tA)−1BT is a non-symmetric discretization of −�2 (a negative semi-definite
operator) and does not provide stabilization. Because in (46) this term is multiplied by �t , it may
be neglected compared to B(M + �tA)−1BT. Therefore, from (46), we obtain (44).

The matrix BM−1BT is at least positive semi-definite so that if ��1, i.e. if �t/��1, we have
from (44) that for some �

QT(K + NBT)Q�QTKQ + O(�t)�(1 − ��t)‖Q‖2K� 1
2‖Q‖2K = 1

2 min{1, �}‖Q‖2K
so that (45) holds for �t small enough with �t/��� with ��1.

Now, as for (28), we can show from (44) that if �t/�<1, then

QT(K + NBT)Q�
(
1 +

(
�t

�
− 1

)
�2max + O(�t)

)
‖Q‖2K + O(�t) (47)

If also �t/��� with now �<1, we have from (47) and �2max�1 that

QT(K + NBT)Q�(� + O(�t))‖Q‖2K + O(�t)��

2
‖Q‖2K = 1

2
min{1, �}‖Q‖2K (48)

so that (45) holds for �t small enough with �t/��� with �<1. �

Theorem 4 has the following obvious implications for the fully discrete pressure operator
K + NBT.

Corollary 5
If �t/���, where the value of � is independent of h and �t , then the fully discrete pressure
operator K + NBT is uniformly coercive.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:573–597
DOI: 10.1002/fld



592 P. B. BOCHEV, M. D. GUNZBURGER AND R. B. LEHOUCQ

On the other hand,

K + NBT → K − BM−1BT uniformly in h if
�t

�
→ 0 as �t → 0 (49)

i.e. the fully discrete pressure operator reduces to the semi-discrete pressure operator K−BM−1BT.

Proof
The uniform coercivity of K+NBT in case the value of � is independent of h and �t is an obvious
consequence of (45). Also, (49) follows easily from (44). �

From (44) we see that implicit time discretization contributes the stabilizing term (�t/�)BM−1

BT to the fully discrete pressure operator. If �t/��� with � fixed, this term is sufficient to overcome
the destabilizing term BM−1BT appearing in the semi-discrete pressure operator. However, if
�t/� → 0, the stabilization term disappears and we are left with the semi-discrete pressure
operator K − BM−1BT that, according to Corollary 3, is unstable for equal-order interpolation.

The latter happens for the spatial � (10) when �t → 0 and h is held fixed. This explains the onset
of numerical difficulties with the pressure as �t becomes small in our computational experiments.
Therefore, to avoid the small time step instability when using the spatial � it is necessary to refine
h simultaneously with �t so as to ensure that �t/(�h2)>� for some positive � that is independent
of both �t and h. The results (45) and (49), respectively, show that in this case the fully discrete
pressure operator K + NBT is stable. Note that from (42)

Uk+1 =Uk + O(�t)

This indicates that as �t → 0 with h fixed in (10), the velocity approximations are stable, i.e.
Uk+1 → Uk as �t → 0. Computational experiments show that this is indeed the case. However,
while the stability of the velocity does not seem to be affected, the problems with the pressure
operator may still be relevant to the accuracy of those approximations.

We also note that for the transient � defined in (19)

� = �t

2

(
1 +

(
�t

�h2

)2
)−1/2

and so, for h fixed and �t → 0 it follows that �t/�>2. While this seems to suggest that the
transient � will avoid the small time step instability, the problem is that in the small time step limit
� = O(�t) and all stabilizing terms in (41) become negligible. As a result, this problem defaults
to an unstable discretization of (15).

Therefore, we see that in the small time step limit, the definition of � is subject to two competing
constraints. On one hand, to stabilize the velocity–pressure pair � must scale as O(h2). On the
other hand, to ensure that �t/�>� the stabilizing parameter must scale as O(�t). These constraints
are impossible to satisfy if �t and h are allowed to vary independently of each other. In particular,
in the small time step limit the spatial discretization step h must necessarily decrease as �t → 0.

7. SEMI-DISCRETE PRESSURE OPERATOR FOR � �= 0

The analyses of Sections 5 and 6 addressed the pressure-Poisson stabilized Galerkin method
for which � = 0 in (9). Our main results show that for �= 0 the semi-discrete stabilized Stokes
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equations (18) give rise to an unstable pressure operator and that the associated fully discrete
pressure operator becomes unstable in the small time step limit. In this section we extend these
results to Galerkin-least-squares (�= 1) and the Douglas–Wang (� = −1) stabilization methods with
the spatial definition (10) of �. Assuming that �K = � = �h2 the modified semi-discrete equation
(18) is (

(M + ��C) U̇

�B U̇

)
+
(

A − ��D BT + ��ST

−B − �S �K

)(
U

P

)
=
(
F + ��H

�G

)
(50)

The matrices M, A, B, K and S have already been described;

Ci j = �
∑

K∈Th

(nhj ,�n
h
i )K; Di j = �

∑
K∈Th

(�nhj , �n
h
i )K and (H)i = �

∑
K∈Th

(f,�nhi )K

We note that S, C, D and H vanish for piecewise linear finite elements and (50) defaults to the
same penalty-like formulation for all values of �. Therefore, we assume that Vh and Ph are at
least quadratic (or biquadratic) spaces.

A minimal condition for the solvability of (50) (or (18)) is that the matrix M+��C is invertible.
Recall that the value of � may be restricted to guarantee stability of the steady-state problem
(8). The following lemma shows that � may have to be further restricted in order to ensure that
(M + ��C)−1 exists. To state the lemma we recall the inverse inequality [1]

‖�uh‖0,K�h−2CI‖uh‖0,K
Lemma 6
For any U ∈ RN we have that

(1 − �CI )U
TMU�UT(M + ��C)U�(1 + �CI )U

TMU (51)

If �<C−1
I then, the matrix M + ��C is invertible.

Proof
Definition of M and C gives

UT(M + ��C)U =‖uh‖20 + ��
∑

K∈Th

(uh, �uh)K

Using the Cauchy inequality, the inverse inequality and that � = �h2

�
∑

K∈Th

(uh, �uh)K��CI‖uh‖20

Using again that ‖uh‖20 =UTMU gives (51). If �<C−1
I the lower bound in (51) implies that

M + ��C is coercive and hence, invertible. �

Assuming that �<C−1
I , so that M + ��C is invertible, the general form of the semi-discrete

pressure equation (24) with � �= 0 is given by

(K − B(M + ��C)−1(B + ��S)T)P

=G − B(M + ��C)−1(F + ��H) + (�−1B + �S + B(M + ��C)−1A − �D)U (52)
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From (51) it follows that M + ��C is spectrally equivalent to M, and from (25) and the inverse
inequality we see that �S is of the same order as B. Therefore, spectrally

K − B(M + ��C)−1(B + ��S)T ∼ K − BM−1B

As a result, the Galerkin-least-squares (� = 1) and the Douglas–Wang (�= − 1) semi-discrete
pressure operators are qualitatively equivalent to the pressure-Poisson (�= 0) semi-discrete oper-
ator. The instability of the Galerkin-least-squares and the Douglas–Wang semi-discrete pressure
operators has the same implications on the fully discrete pressure operators for those methods as
were discussed in Section 6 for the pressure-Poisson fully discrete pressure operator. In particular,
for all three methods, the fully discrete pressure operator is unstable in the small time-step limit.
This is the main result of our paper.

8. CONNECTION WITH PRESSURE-PROJECTION METHODS

An interesting observation is that the operator K − BM−1BT also arises in pressure-projection
methods. The main difference with (24) is how K − BM−1BT enters that formulation. In a
pressure-projection method, this matrix effectively relaxes the discretized continuity equation [25]
to

−BU + �t (K − BM−1BT)P = 0 (53)

while the pressure operator is still given by the symmetric and positive definite stiffness matrix
K. In contrast, in (24), the matrix K − BM−1BT is the pressure operator itself. To stabilize (53),
K−BM−1BT only has to be positive semi-definite, whereas to provide a well-posed semi-discrete
equation (24), this matrix needs to be uniformly (in h) positive definite.

A pressure-projection method implemented with equal-order finite element spaces will also
become unstable when �t is small relative to h2. However, the cause of this instability is funda-
mentally different from the one in stabilized methods. In the latter setting, the instability is caused
by the fact that the fully discrete pressure operator approaches the unstable semi-discrete pressure
operator K − BM−1BT. In contrast, in a pressure-projection method the instability arises from the
insufficient amount of stabilization provided by �t (K − BM−1BT) for small �t .

9. CONCLUDING REMARKS

The main result of this paper is that a method of lines approach in conjunction with residual
based stabilization for the spatial discretization of unsteady incompressible flow problems leads
to an unstable semi-discrete pressure operator. The backward-Euler time discretization method
contributes terms that stabilize this operator, provided‖ �t/��� for � independent of h and �t , i.e.
the fully discrete equations are conditionally stable. This can be seen as a consequence of the fact
that as �t → 0, the fully discrete problem converges to the (unstable) semi-discrete formulation.

‖ This lower bound on the ratio �t/h2, associated with the spatial �, should be contrasted with the classical stability
condition for the explicit forward-Euler scheme that involves and upper bound on that ratio.
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Theoretical estimates indicate that the onset of numerical instabilities is faster and more severe for
higher polynomial degrees. These findings are confirmed by computational experiments.

Our analysis shows that the small time-step instability is inherent to the combination of residual-
based stabilization in space and implicit integration in time. This conclusion can be elucidated
by using variational multiscale analysis (VMS) [37] ideas. Specifically, VMS shows that residual
stabilization is equivalent to a subgrid model and adds stability by approximating the unresolved
scales. As a result, a proper approach to stabilize an unsteady problem requires subgrid models
that approximate unresolved scales both in space and time. However, a method of lines approach
separates the discretization steps. As a result, extension of stabilized methods formulated for steady
flows fails to account for the unresolved temporal scales.

The problems and issues discussed in this paper are typical only for the small time-step limit.
For standard incompressible flow applications where small time-steps are not needed, the use
of consistent spatial stabilization, in conjunction with an implicit time integration, remains an
attractive and viable alternative to mixed Galerkin methods. This is particularly true if the main
goal of the simulation is to compute a steady-state solution. However, for applications that require
small time-steps, such as chemically reacting flows, one has to exercise extreme caution when the
time-step is less than O(h2). For such applications we recommend that �t/�h2>� for some fixed
positive �. Corollary 5 asserts that in this case the fully discrete pressure operator will be uniformly
coercive, and so, using a small � gives more flexibility in the choice of �t . Another alternative
is to use nonresidual stabilized methods such as pressure projection [5, 38, 39], or pressure jump
[40, 41] stabilized methods, or a stable mixed method. It may also be possible to avoid the small
time step instability by using a space–time stabilized formulation [42]. However, further studies
of such methods will be needed before a conclusion can be made about their stability in the small
time step limit.
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